SRI International

2017 NETL CO₂ Capture Technology Project Review Meeting

Development of Mixed-Salt Technology for CO₂ Capture from Coal Power Plants

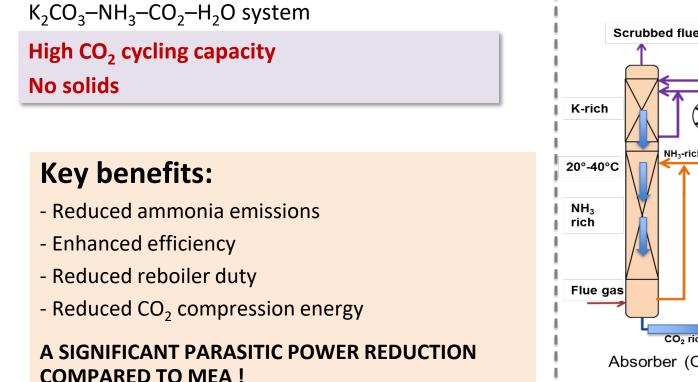
Indira S. Jayaweera Sr. Staff Scientist and Program Manager Energy and Environment Center SRI International

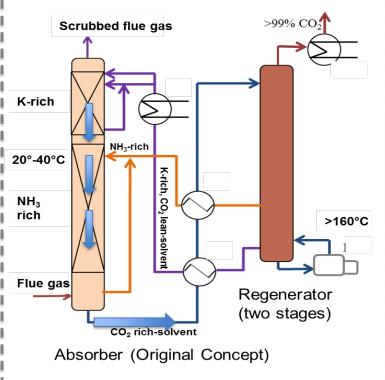
August 21-25, 2017 • Omni William Penn Hotel • Pittsburgh, Pennsylvania

Technology Background and Project Details

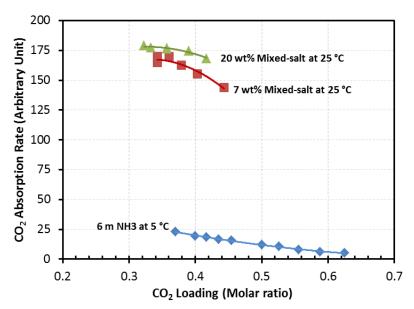
Mixed-Salt Process Details

How it works:

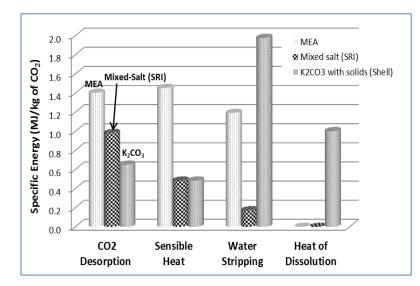

Selected composition of potassium carbonate and ammonium salts


• Overall heat of reaction 35 to 60 kJ/mol (tunable)

Absorber operation at 20° - 40° C at 1 atm with 30-40 wt.% mixture of salts


Regenerator operation at 120° - 180° C at 10-20 atm

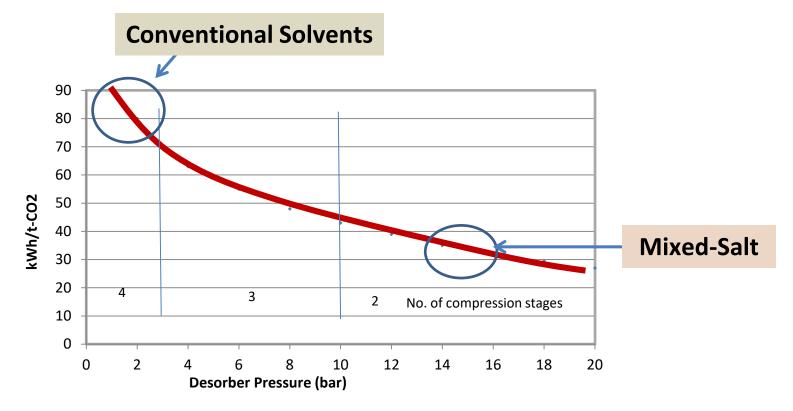
Produce high-pressure CO₂ stream



Enhanced Kinetics at High Temperature

Observed rate enhancement of CO₂ absorption efficiency by comparison of mixed-salt with NH₃

Low Energy Requirement for CO₂ Stripping



Estimated regenerator heat requirement for mixedsalt system with 0.2 to 0.6 cyclic CO₂ loading. Comparison with neat K₂CO₃ and MEA is shown

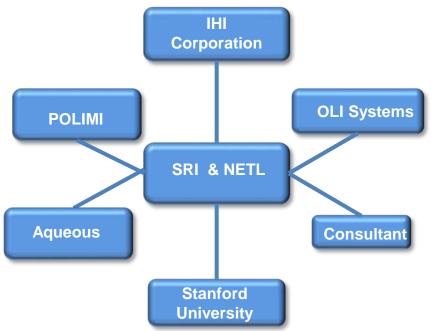
(Source for the Shell K_2CO_3 process, Schoon and van Straelen, 2011).

Absorber side: Reduced packing height Regenerator side: Reduced water evaporation

Mixed-Salt System Requires Less Energy for CO₂ Compression

Electricity output penalty of compression to 100 bar as a function of desorber pressure

Source: Luquiaud and Gibbins, Chem Eng Res Des (2011).


Project Budget, Team, and Work Organization

DE-FE0012959 DOE Funding: \$2,817,989 Partner Share: \$705,660 (50% in-kind)

Project Manager: Mr. Steven Mascaro, NETL

Prime Contractor: SRI International

Project Team: US and International Partners

Work Organization

- SRI International
 - System design, installation and testing
- IHI Corporation, Japan
 - Industrial partner/ technology evaluator
 - OLI Systems, USA
 - Process modeling (energy and mass balance)
 - Aqueous Systems Aps, Denmark
 - Thermodynamic modeling (Dr. Kaj Thomsen)
- POLIMI, Italy

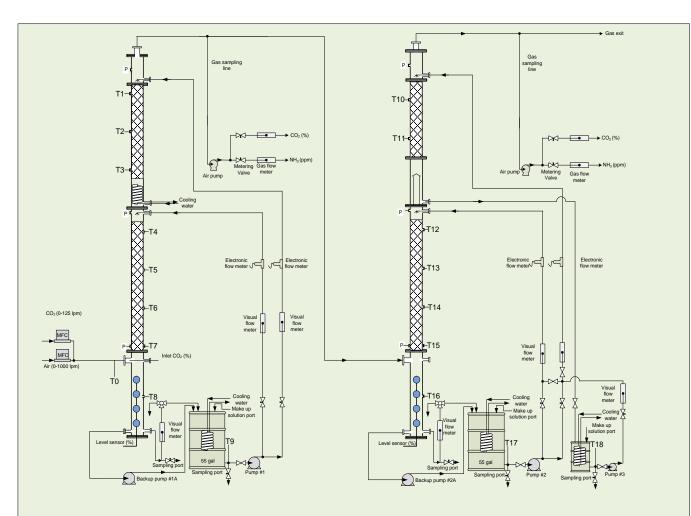
٠

- Techno-economic analysis
- Stanford University (BP1), USA
 - Technology comparisons
- Consultant (BP1)

Project Goals

- Budget Period 1 (BPI)
 - Demonstrate the absorber and regenerator processes individually with high efficiency and low NH₃ emissions
 - Develop comprehensive thermodynamic modeling package
- Budget Period 2 (BP2)
 - Demonstrate the complete CO₂ capture system, optimize system operation, and collect data to perform the detailed techno-economic analysis (TEA) of the CO₂capture process integration to a full-scale power plan
 - Test two alternative flowsheets for process optimization, test the system at highest possible CO₂ loadings, and determine the steam usage for regeneration
 - Update the TEA and conduct EH&S analysis of the process

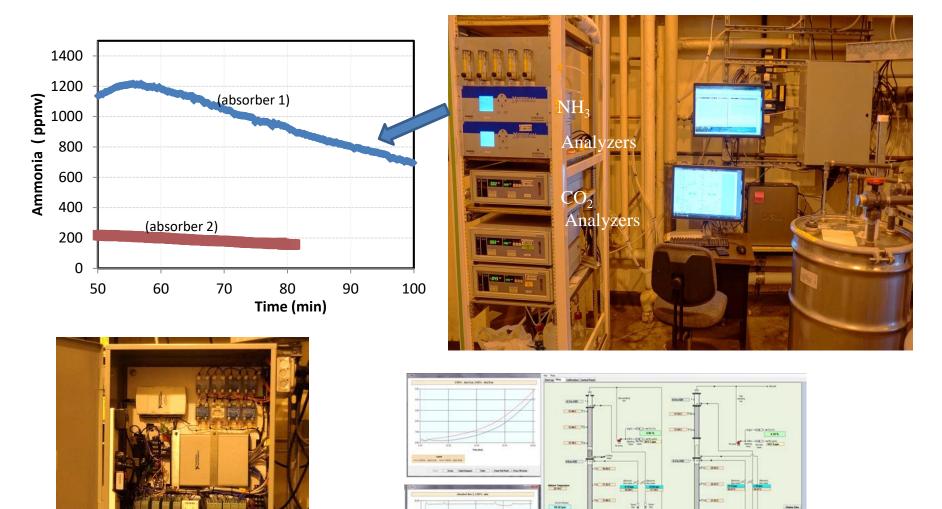
The overall program objective is to demonstrate that mixed-salt technology can capture CO_2 at 90% efficiency and regenerate (95% CO_2 purity) at a cost of \leq \$40/tonne to meet the DOE program goals.


Work Performed

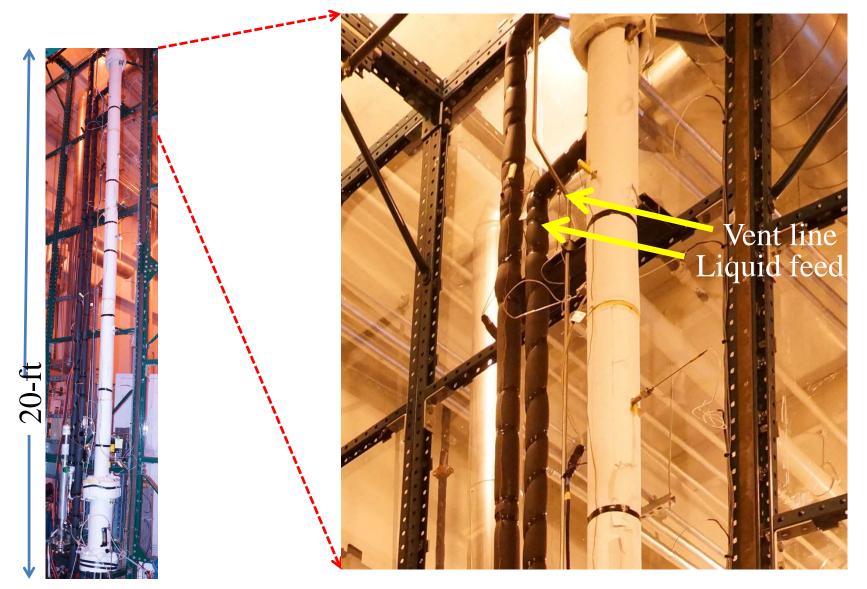
Project Status Update

BP2 Extended Program (2/28/2018)	Status
Task 1.0 - Project Management and Planning	
Task 7.0 - Integrated System Testing (Variant 1)	Completed
Subtask 7.1 - System Modification	
Subtask 7.2 - Operation with Variant 1	
Subtask 7.3 - Operational Data Analysis	
Task 8.0- Integrated System Testing (Variant 2)	Completed
Subtask 8.1 - System Modification	
Subtask 8.2 - Operation with Variant 2	
Subtask 8.3 -Operational Data Analysis	
Task 9.0- High-Capacity Runs and Modeling Update	
Subtask 9.1 - Modeling of High-capacity Solvent	Completed
Subtask 9.2 - System Operation at High Capacity	Ongoing
Subtask 9.3 - Mass Balance and Energy Update (OLI)	Completed
Subtask 9.4 - TEA update (POLIMI, SRI, & OLI)	Completed
Task 10.0- Regenerator Steam Use Measurement and Modeling	
Subtask 10.1 - Regenerator Steam Use Measurement	Ongoing
Subtask 10.2 - IHI System Testing and Modeling	Ongoing

We completed the BP1 and BP2 Tasks 7 & 8 on time and updated the TEA after completing Task 8. Tasks 9 & 10 will be completed on schedule.


Schematic of the Absorber System (BP1)

April, 2014


Process Control And Monitoring

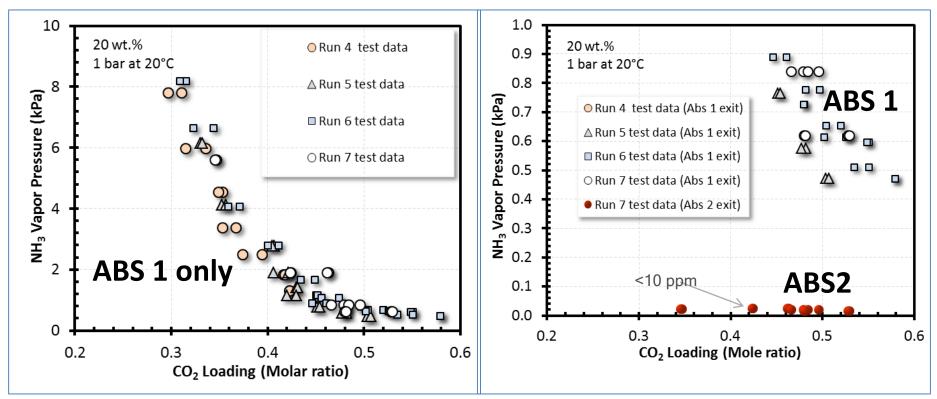
Data acquisition and control hardware interface

Online data monitoring

Regenerator System (BP1)

Bench-Scale Absorber Performance (BP1)

Test Data Modeling and Test Data Absorber 1 Efficiency 15 100 20 wt.% Mixed-Salt 90 At 20 °C and 1 atm 80 CO₂ Vapor Pressure (kPa) 70 10 **Operating lines** 0 60 (%) 05 00 06 (%) 00 0 SCEN 5 Gas Analysis and the second 30 Liquid Analysis 20 90% Capture 10 0 0.4 0.5 0.3 0.6 0.2 0.3 0.4 0.5 0.6 0.7 CO₂ Loading (Molar ratio) CO₂ Loading (Molar ratio) Better than 90% efficiency with CO₂ vapor pressure at the absorber exit


incoming lean absorption solution and < 0.4 CO₂ loading at 25°C.

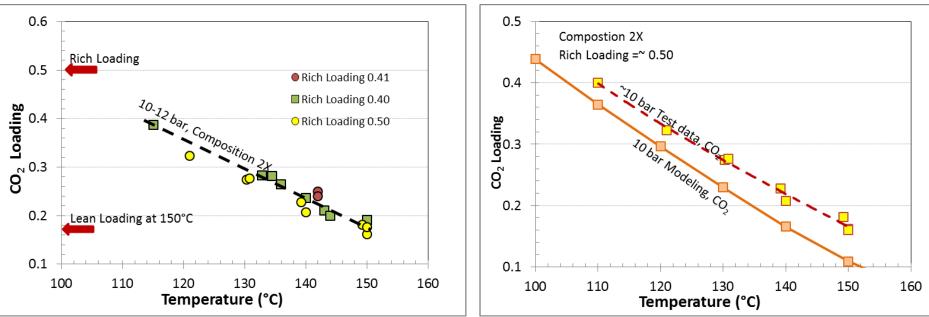
under various CO_2 -loading conditions

The observed overall rates for CO_2 absorption are on the same order as those of MEA-based systems and about 5-7x higher than conventional ammonia systems.

Absorber Ammonia Management (BP1)

Test Data

NH₃ vapor pressure at the Absorber 1 exit under various CO₂-loading conditions


NH₃ vapor pressure at the Absorber 1 and 2 exits under various CO₂-loading conditions

Regenerator Performance (BP1)

Single-Stage Regenerator (Oil heated)

Test Data

Modeling and Test Data

Variation of attainable CO₂-lean loading level with temperature for rich loadings of 0.40 to 0.50 at 10-12 bar.

Comparison of measured and modeled attainable CO_2 -lean loading at 100 to 150 °C.

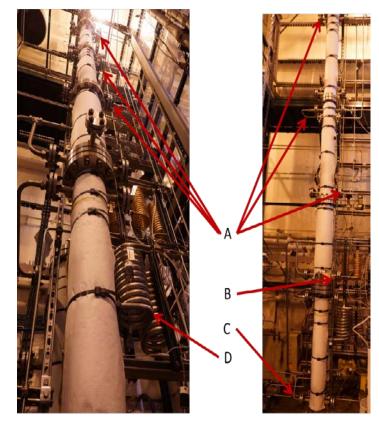
Process was demonstrated with cyclic loading from 0.2 to (lean) to 0.5 (rich) at 150° C

The produced lean loading far exceeds that required for > 90% CO₂ capture from flue gas streams

System Testing in Continuous Mode (BP1)

0.60 100 40 Efficiency 90 35 30 0.50 **Temperature (°C)** Temperature (°C) 15 10 80 70 60 **Effciency Rich Loading** CO₂ Loading 0.40 Aspen Model Testing at SRI 40 🛞 0.30 5 gas flow rate:15 acfm 0 30 9 10 11 12 0 5 6 7 8 Lean Loading 0.20 20 Column Stage Number (from top) 10 0.10 0 150 250 100 200 300 350 Time (min)

Test Data

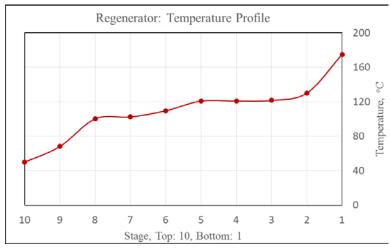

Modeling and Test Data

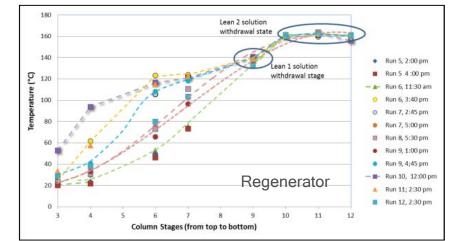
90% CO₂ capture efficiency with 0.19 to 0.40 cyclic CO₂ loading in Absorber 1 (regenerator at 140 °C) Gas flow rate = 15 acfm

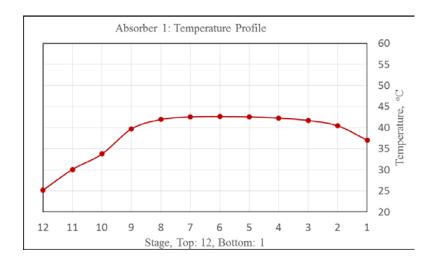
Large Bench-Scale Mixed-Salt System at SRI (BP2) 0.25 t-CO₂/ day capacity; operational since January 2016

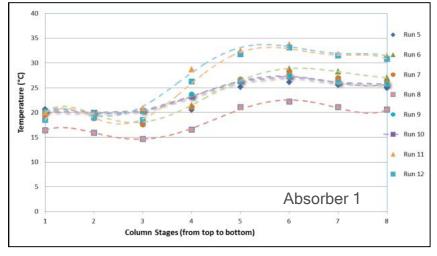
Absorbers

- A : Rich solution inlet locations.
- B : Discharge location for high NH3/K ratio solution
- C : Discharge location for low NH3/K ratio solution
- D: Heat exchangers (Cold rich \leftrightarrow Hot lean)

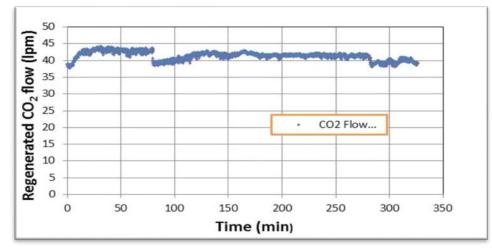

Regenerator pictures from different angles

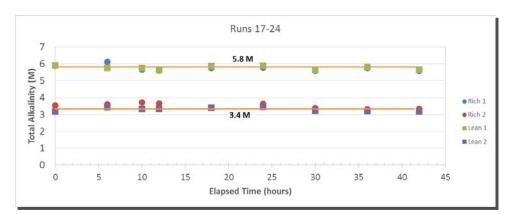

Continuous operation of the integrated system has gone very smoothly during 1.5 years of operation


Absorber and Regenerator Temperature Profiles (BP2) Integrated System (Regenerator: Steam heated reboiler)


Modeling Data

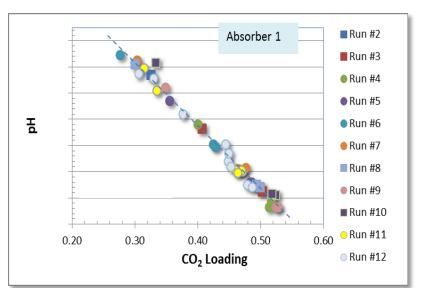
Test Data




OLI Modeling 550-MW System

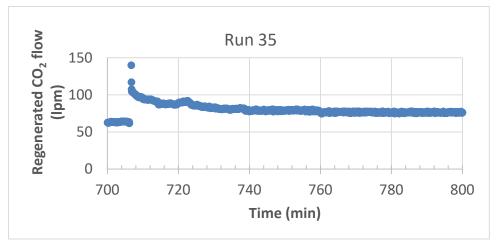
SRI Bench-Scale System

Data from Integrated System Testing in 2016 Excellent Performance



Observed 90% capture efficiency and regeneration with cyclic loading of ~0.7 mole of CO_2 /mole of ammonia

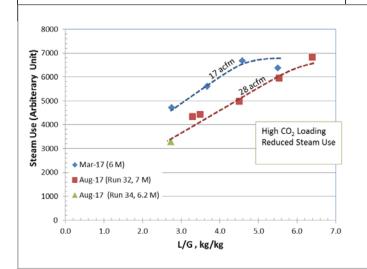
Alkalinity of rich and lean solutions circulating in the integrated system


 300 to 400 *slpm* simulated flue gas with 15% CO₂


Data showing relationship of the measured pH of rich and lean solutions from Absorber 1

Absorber: 20-35°C Regenerator stage 1:140 °C Regenerator stage 2:160 °C

Data from Integrated System Testing in 2017 High-throughput Runs



Observed 85-90% capture efficiency and regeneration with cyclic CO_2 loading of ~ 8 - 9 wt.%

Alkalinity of rich and lean solutions circulating in the integrated system

 600-800 *slpm* simulated flue gas with 15% CO₂

Data showing specific steam consumption at varying L/G ratios

Absorber: 20-35°C Regenerator stage 1:135 °C Regenerator stage 2:160 °C

Techno-economic Data

Comparison between mixed-salt technology and DOE baseline case

Performance Factors	Econamine Baseline	SRI's Mixed-Salt Technology*
CO ₂ capture, %	90.2	90.3
CO ₂ purity (before compression), %	99.61	> 99.0
Stripper pressure, atm	1.0	10.0
Raw water recycle, gpm	~325,000	<100,000
Auxiliary power, KWe	20,600	3,581
Heat duty, MJ/kg of CO ₂	3.56	2.0

Process Modeling: OLI, IHI and POLIMI

Cyclic loading: 0.18 to 0.58 Reboiler duty: 2.0 (OLI); 2.3 MJ/kg-CO₂ (POLIMI); 2.1 to 2.3 MJ/kg-CO₂ (IHI Measured) Ammonia emission < 10 ppm

Cost of CO₂ Captured (Excluding T&S): ~\$38/tonne-CO₂ for Mixed-Salt; \$54/tonne-CO₂ for Case 12B

Reference: Jayaweera et al. Energy Procedia 63 (2014) 640-650 and Energy Procedia (2017)

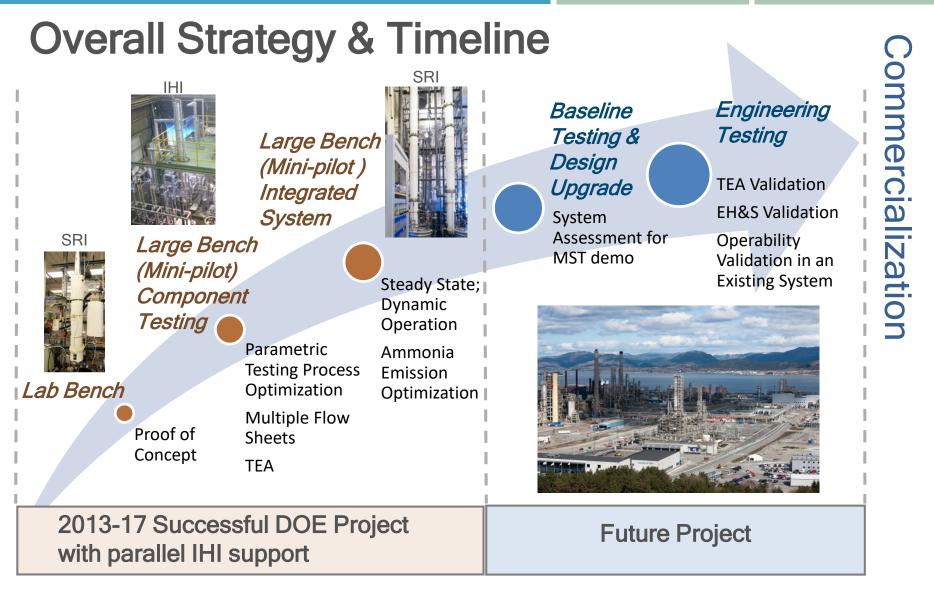
Project Accomplishment Summary

- Collected experimental and modeling data available in the literature for the H₂O-CO₂-NH₃-K₂CO₃ system; developed a software package to determine speciation and compositions.
- Developed a rate-based model from the SRI test data; mass and energy balance were determined for a two-process layout to add a CO₂-capture system for DOE Case 11. The comparison was made between the mixed-salt process and DOE Cases 12 and 12B.
- Demonstrated the operation of the absorber at high temperature (20 to 40°C).
- Demonstrated ammonia emission reduction by using the two-stage absorber approach.
- Demonstrated system cyclic operation with cyclic loading between 0.2 and 0.59.

Project Accomplishment Summary (continued)

- Demonstrated high CO₂ loading and >90% CO₂ capture with regeneration of > 99% purity CO₂ at high pressure.
- Collected test data over a wide range of conditions. Parameters varied included feed gas flow rate, mixed-salt composition, CO₂ loading, and the L/G ratio.
- Demonstrated cyclic operation of the integrated system with 90% efficiency (~ 0.3 ton/day CO₂ capture) and the generation of lean solutions with two compositions (ammonia rich, potassium rich) using a two-stage regenerator.
- Demonstrated long-term operability of the integrated system (1.5-year operation).

Mixed-Salt Technology Summary


US Patent 9,339,757 issued on May 17, 2016

Process Summary

- Uses inexpensive, industrially available material (potassium and ammonium salts)
- Requires no feedstream polishing
- Does not generate hazardous waste
- Has the potential for easy permitting in many localities
- Uses known process engineering

Demonstrated Benefits

- Enhanced CO₂-capture efficiency
- High CO₂-loading capacity
- High-pressure release of CO₂
- Reduced energy consumption compared to MEA
- Reduced auxiliary electricity loads compared to the conventional ammonia processes
- Possible flexible carbon capture operation

SRI has the patent coverage for mixed-salt technology in the US, Japan, and Europe

Multiple flow-sheets have been modeled and tested for process optimization Next step in scale-up is to test the technology in an existing demonstration site

Acknowledgements

NETL (DOE)

• Mr. Steven Mascaro, Ms. Lynn Bricket, Mr. John Litynski and other NETL staff members

SRI Team

 Dr. Indira Jayaweera, Dr. Palitha Jayaweera, Ms. Elisabeth Perea, Ms. Regina Elmore, Dr. Srinivas Bhamidi, Mr. Bill Olsen, Dr. Marcy Berding, Dr. Chris Lantman, and Ms. Barbara Heydorn

Collaborators

• OLI Systems (Dr. Prodip Kondu and Dr. Andre Anderko), POLIMI (Dr. Gianluca Valenti and others), Stanford University (Dr. Adam Brant and Mr. Charles Kang), Dr. Eli Gal, and Dr. Kaj Thomsen

Industrial Partner

• IHI Corporation (Mr. Shiko Nakamura, Mr. Okuno Shinya, Mr. Yasuro Yamanaka, Dr. Kubota Nabuhiko, and others)

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank You

Contact:

Dr. Indira Jayaweera

indira.jayaweera@sri.com

1-650-859-4042

SRI International

Headquarters 333 Ravenswood Avenue Menlo Park, CA 94025 +1.650.859.2000

Additional U.S. and international locations

www.sri.com